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Abstract. In order to describe the dynamics of a spin-oscillator Hamiltonian analytically, 
a second-order differential equation for the transition probability amplitude is established 
by means of a transcription into the Bargmann space of entire functions. The solution of 
the differential equation is given by a resolvent expansion whose zeroth-order member is 
in general exact up to fourth order in time; for various degenerate parameter values, 
however, it is exact for all times. The Laplace transform of any higher-order member is 
given explicitly. 

1. Introduction 

For a particle with spin 4 coupled to a boson field mode (Schweber 1967, Reik et a1 
1982, 1985), exact solutions are of great interest because this simple looking but 
nevertheless non-trivial system serves as an archetypal model for a large variety of 
physical situations ranging from atomic physics and quantum optics to solid state 
physics. Let us give just a few examples from among these topics: a single atom 
coupled to an electromagnetic field (Dicke 1954), quantum diffusion (mode-assisted 
tunnelling) (Leggett et a1 1987, Wagner and Vhzquez-Mhrquez 1987, Weiss et a1 1987), 
quantum chaos (Graham and Hohnerbach 1984) and laser action in vibronic systems 
(Schwendimann et a1 1988). 

Stationary isolated exact solutions were first found in the case of a Jahn-Teller 
system which is closely related to our model (Judd 1979). Attempts to construct exact 
solutions in the complete parameter space were advanced systematically by Reik et a1 
(1982,1985) by means of function theoretical methods in the spirit of Schweber (1967). 
In contrast to these treatments Schwendimann and Sigmund (1986) looked for time- 
dependent solutions. 

Apart from the ubiquity of the model, there is still another motivation for investigat- 
ing the coupled spin-oscillator system. Until now rather elaborate methods have been 
developed in order to determine the eigenvalues and eigenfunctions with high precision. 
However, these methods involve a considerable amount of mathematics. Therefore, 
one still feels the need to find novel, effective and even simpler schemes. 

In the present paper (in contrast to most others in this field) we are interested in 
solutions which evolve in time in order to describe the dynamics of the system. Within 
the framework of an iteration procedure, we solve the time-dependent Schrodinger 
equation in a projected form, thus obtaining solutions for the transition probability 
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amplitudes. Initial and final states of the system are allowed to be arbitrary. Our 
description is quite valuable for a large number of problems in physics (see above), 
at least as long the (generally non-stationary) initial state can be prepared, say, as a 
single eigenstate of some zeroth-order Hamiltonian. Since we do not deal with station- 
ary states of the system, our results look formally quite different to previously published 
results. In summary, it seems to us that we have found a new and promising pathway 
towards the goal of constructing exact solutions. 

Concerning a more explicit characterisation of the model, we deal in this paper 
with a spin-oscillator Hamiltonian which is a somewhat extended variant of that usually 
seen in the literature. This variant has been derived in RWA from a model Hamiltonian 
for an active centre of a vibronic laser (Schwendimann and Sigmund 1986): 

H = 2Aa2 +Rb'b + Aa,(bi+ b) + ya+ + y*a-  (1.1) 

where [ b, 6'1 = 1 and [a+, a-] = 2a2, [a,, a,] = +c*, a: = I, A denotes the particle- 
mode coupling and SZ is the mode frequency. I y /  characterises the strength of tunnelling 
if the Hamiltonian is seen as describing a two-site system where tunnelling assisted 
by a single mode occurs. A takes account of an asymmetry in the potentials of the 
two sites. Equation (1.1) reduces to a form more frequently investigated if y is real 
and A vanishes. 

A transformed version of (1.1) turns out to be more convenient for our purposes. 
With 

fi = U-'HU U = exp[(A/CR)a,(b - bt ) l  (1.2) 

the new Hamiltonian becomes (the prime indicating neglect of a parameter-dependent 
energy shift E ,  = -CRS2/4) 

f i '=2Au2 +CRbtb + yV(S)a++ y* V(-S)U- 

V(+S) = exp[*S(b - b')] S = - h / R .  
(1.3) 

This paper is organised as follows. In $ 2 equations for the transition probability 
amplitude are derived from (1.3), they suggest a change from a description in occupation 
number space to a formulation in Bargmann space where one deals with coherent 
states of Bargmann or Glauber type (Bargmann 1961, 1962, Glauber 1963). The 
function theoretical consequences of this transcription are drawn; they apply to the 
problem of solving a second-order differential equation obtained for the Laplace 
transform (with regard to the time) of the transition probability amplitude. In § 3 a 
resolvent expansion is developed in order to solve the differential equation. Only a 
particular initial condition as the simplest case is treated (cf $0 3.1 and 3.3). The 
solution in zeroth order is analysed by means of combinatorics (cf $ 3.2). In 0 4.1 a 
rather explicit form for any member of the resolvent expansions with arbitrary initial 
conditions is deduced ( $ 5  3.1 and 3.3 may be read as an introduction to this comprehen- 
sive section). In $4.2 the correct symmetry behaviour under time reversal is sub- 
sequently imposed. In $4.3 the inverse Laplace transformation is explicitly performed. 
Section 4.4 is left to a listing of exact limiting cases in the parameter space and to the 
estimation of the time region where our solutions for arbitrary system parameters are 
reasonable. In $ 4.5 the question of convergence of the present resolvent expansion 
is examined. 

Finally, a remark on the notation: since in our calculations the parameters of the 
Hamiltonian (1.3), i.e. A, CR,  y, y* and 6, will separate into the sets {A, C R ,  y, 7" )  and 
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( 6 )  throughout the paper, we shall denote the former set by a for the purpose of a 
compact notation: 

2. Second-order differential equations for the transition probability amplitudes 

We want to  solve the Schrodinger equation for the Hamiltonian (1.3) (a  = {A, s2, y, y * } )  

a 
- 19(a, 6; t ) )  = - iH(a,  6 ) / W ( a ,  6; t ) )  
a t  

(2.1) 

where without loss of generality a product state 

M a ,  6 ;  0)) = In?) 
is chosen as the initial state. Here n indicates the occupation number of a harmonic 
oscillator and t and 3. represent spin-i states. Our problem is equivalent to that of 
calculating the transition probability amplitudes which arise as coefficients if the 
time-dependent solution vector is decomposed along the complete set of product states 
I m t i ) :  

IWa, 6 ;  t ) )  = c Imt)(tmlY(., 6 ;  N+-C Im.l)(.lmlWa, 6 ;  t ) ) .  (2.3) 
m m 

Multiplying (2.1) from the left by an arbitrary state (tml we obtain 

(d /d t ) ( tm lq (a ,  6 ;  t ) ) =  -i(A+ms2)(.Tml9(a, 6; t))-iy(&mlV(6)IV(a, 6 ;  t)). 

Note that the last term is a superposition of transition probability amplitudes 

( 2 . 4 ~ )  

We complete (2.4a) by the equation of motion for the sum (2.5) 

(alat)(lml V(6)IWa9 6 ;  t ) )  

=iA(lmlV(6)l9(a,  6; t))-is2(.JmlV(6)btblT(a, 6; t ) )  

- i Y * ( t 4 w a ,  6 ;  t ) )  (2.4b) 

where clearly ( 2 . 4 ~ )  and (2.4b) have to be complemented by their initial conditions 

(Tml?(~, 6; 0)) = a m , n  (.lml V(8)IWa, 6 ;  0)) = 0. (2.6) 
Unfortunately, the system (2.4) is not closed on account of the second term on the 
right-hand side of (2.4b). Therefore let us switch over from oscillator state vectors (nl 
to Bargmann vectors (("1 (Bargmann 1961, 1962, Schweber 1967) 

(2.7) 

These new vectors are indicated by small Greek characters to avoid confusion. By 
virtue of this replacement the operators bt  and b are realised by bt + 6 and b +a/&$, 
if acting to the left. More explicitly, we multiply (2.1) from the left by (Tt*lV(-6), 
use the identities 

(&*I  v(-6) = exp(-f6') exp(St)([*- 61 

(5*1V(-6)btb=(&-6)(a/d5-6)(t*/V(-6) 
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and arrive at 

[a /a t+iA+in(5-6)  d/a53(t5*-6l\u(a, 6; t ) )  

= -iy(.J(*lq(a, 6 ;  t ) )  exp(+6*- 66) 

[a la r  - iA+inga/a5]( .J5*I~(a,  6; t ) )  

= -i-y*(t(*- 6 lq (a ,  6 ;  t ) )  exp(-;a2+ 85) 

With regard to the formal solution of (2.1) and (2.2), i.e. 
with initial conditions corresponding to (2.6). 

l q (a ,  6 ;  t))=exp(-iH(a,  6)t)ln.r) 

the following notation is self-explanatory: 

(2.9a) 

(2.9b) 

(2.10) 

(2.11) 

The Laplace transforms (with respect to the variable t )  of G,,,,, and G,J,,,, are 
denoted by gt l ,nT(t ;  a, 6; s)  and gTJm,nT(a,  6; s), respectively. The initial value problem 
(2.9) is now cast into the form 

[s+iA+in(5-6)a/a5]gr..T(5-s; a, 6 ;  s) 

= -iygl,nT(t; a, 6 ;  s) exp(ts2-6O+(5*-Sln) (2.12a) 

(S - iA+i~5a /a5 )g~ ,n r (5 ;  a, 6 ;  s) = -iy*g,,nt(5-6; a, 6 ;  s) exp(-$2+65). (2.12b) 

What about the integration constants in the variable 5? To answer this question, one 
uses the fact that 

(2.13) 

is an entire function in 6. As is well known (Schweber 1967), this is a feature which 
holds quite generally: let, in (t*lf), f be an arbitrary normalisable vector, then it is 
easily proved by means of standard convergence criteria that 

(2.14) 

has an infinite radius of convergence. The extension to vectors such as (2.10) is obvious. 
Therefore the solution of (2.12) has to lie in the space of entire functions; this fixes 
the integration constants because the solution vector (2.10) is unique. The inverse 
formulae to (2.13) are 

( 2 . 1 5 ~ )  

(2.15 b) 

Similar equations hold also for the t-dependent expressions. These inverse formulae 
allow us to return to the G,-lm,nt(a, 6; t )  we were originally interested in. 

To deal with the system (2.12), we eliminate ( 2 . 1 2 ~ )  and get 

D(6, a/a& a, 6 ;  s)gi,nr(S; a, 6 ;  s) = -ir*(t*I V(-s) ln)  (2.16) 
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with the differential operator 

D(6, a/a& a, 6 ;  s)  = [s +iA+iCl( [  - 6 ) ( 8 / 8 6  - S)][s - iA+is26 8/85] + IyI2 

and the inhomogeneity 

((*I v(-s)ln) = exp( -fa') exp(6()(6* - 6ln)  = exp(-@')( 1/v'X)(6 - 6)" exp(S6). 

The 'spin-up' counterpart to (2.16), written as similarly to (2.16) as possible, is 

(2.17) 

(2.18) 

%c, a/ag; a, 6 ;  S)gt,,&- 6 ;  a, 6; s) ex~(--%j*+ 66) 

= (s  - iA+ iCl6 a/ag)(6*1 V (  -6)l n )  (2.19) 

where in 6 the two expressions in the square brackets of D are just interchanged. Of 
more practical interest is the form resulting from (2.4b): 

-iy*GTm,nt(a, 6 ;  t )  =c (8/8t-iA+ikR)(mJV(6)lk)Glk,nT(a,  6 ;  2 )  (2.20) 
k 

which connects both types of solutions and may be used once Glk,"?(aI 6; t )  is known. 
As we do not know of any analytical solution of (2.16) or (2.19) in general, we 

shall develop a step by step expansion in 90 3 and 4. This expansion is a resolvent 
expansion (cf 0 3.3); the tricky point is to find a zeroth-order solution as starting point 
which is optimal in some definite sense (cf 00 3.1 and 4.1). After solving (2.16) and 
(2.19) by means of the expansion to some degree of accuracy, we have to transform 
back to the approximate gTJm,n?((Y, 6 ;  s)  in a way corresponding to (2.15). Thus we 
conclude that we must also require approximate ( 'perturbative') solutions of (2.16) 
and (2.19) to lie in the space of entire functions. 

3. Low-order approximations with restriction to the oscillator ground state 
as initial state 

A most crucial point is to iterate (2.12) or its equivalents (2.16) and (2.19) in a 
satisfactory way. Of course, it is not sufficient to proceed from exactly solvable 
Hamiltonians belonging to decoupled spin-oscillator systems, i.e. from (1.3) with either 
6 = 0 or y = 0; each of the two possibilities simply proves too poor to be taken as a 
basis for a pertubation theoretical treatment. Rather we have to look for more sophisti- 
cated methods such as starting from an appropriate differential operator D('), where 
we reject an interpretation of D(O) as stemming from an underlying Hamiltonian via 
a transcription of the Schrodinger equation into the Bargmann space of entire functions. 
As such an ansatz D(O) may depend on the initial stare, we confine ourselves to the 
initial state IO?) in this section. 

3.1. Solution in the zeroth-order approximation 

The reasoning that led us to an optimal starting point D'O' consists of two parts. 
(i) If the transformed system (1.3) decouples ( 6  = 0 and/or y = 0), the occupation 

number of the oscillator state cannot change in time. According to (2.15a), 
gT,or([; a, 6; s) cannot depend on 6 at all, because all gTm,OT(a,  6; s )  with m # 0 have 
to vanish. Therefore the term containing in ( 2 . 1 2 ~ )  can be dropped in the limiting 
cases of decoupling. 
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(ii) There is an indication that one may neglect the term containing 8/86 also in 
the case x # 0, S # 0. Let the initial state be arbitrary for the moment. One observes 
that ( 2 . 4 ~ )  and (2.4b), restricted to m = 0, are identical with ( 2 . 9 ~ )  and (2.9b), if one 
subsequently equates 6 = 6 in both equations. These identities hold because 

( 3 . 1 ~ )  
(3.lb) 

(the last equation is easily deduced from writing the first equality of (2.8) to the left 
of V(S)lV(a, 6; t ) ) ) .  Hence it is tempting to set 6 =  S in ( 2 . 1 2 ~ )  or, equivalently, in 
the first bracket of (2.17) from the very beginning so that (2.16) could be easily solved. 
Of course this procedure is not quite correct because the order of the differential 
equation (2.16) is reduced and an integration constant gets lost. We hope, however, 
to deal with a case which is very robust with respect to approximations-at least for 
small times t-if the initial amplitude GT0,,,( a, 6; 0) is maximal; this fixes n at n = m = 0 
as in the preceding paragraph. 

(?e* - W a ,  8; t))lt=s = ( T m I W a ,  8; t ) ) l m = o  

(&t*IWa, 8; t)) l t=s = exp(tS2)(&m/ V(S)IWa, 6 ;  t ) ) lm=o 

In this approximation (2.16)-(2.18) become 

or’(& 8/36; a ;  s )g i : i r ( [ ;  a, S ;  s )  = -iy* exp(-$S2) exp(S6) (3.2) 

Db0’([,8/ag; a ;  s ) = s 2 + A 2 + ~ y ~ * + ( s + i h ) i l l [ a / a g .  (3.3) 

with 

Diol no longer depends on 6, its lower index characterises the initial state. Equation 
(3.2) with (3.3) is easily solved (the homogeneous solution is found by a temporary 
substitution 6 + exp( q), 68/86 +. 3 / 8 7 ,  whereas a 
ing both the solution and the inhomogeneity in 

A2+lyI2)/iR(s+iA)] gtAT(6; a, 8; s) = C ( a ,  8; S ) p  + 

particular solution is built by expand- 
powers of [). One gets 

with 
dk,O(a;  s) = s2 + A2 + I ?I2+ (s + iA)ikR. (3.5) 

The homogeneous solution has in general a winding point in 6 = 0, hence contradicting 
our requirement of 0 2 that the solution be an entire function. To ensure that the 
exponent of 6 be zero or a positive integer, the integration constant C has to behave 
like a S function in the variable s. As this solution does not make sense as a Laplace 
transform, the homogeneous part has to be dropped. 

Performing both limiting procedures, e-, S according to (3.lb) as well as [+ 0 
after differentiation according to (2.15b), and using 

(01 V(S)lk)=(kl V(-6)10)=exp(- fS2)Sk/&-!  (3.6) 
we are led to 

and 

respectively. Hence by means of our function theoretical requirement we have intro- 
duced the correct linear dependence of the solution on the inhomogeneity, and (3.7) 
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has the correct linear dependence on the terms given by (3.8), i.e. the matrix elements 
of V(6)  in front of (3.7) are not affected by the approximation. 

The zeros of dk,O((Y; s)  

appear in the complex inversion formula of the Laplace transformation which applies 
as long as gi;L,nT(a, 6 ;  s) is a rational function in s 

Equation (3.10) leads in zeroth-order approximation to 

3.2. Interpretation of the zeroth-order solution (in the case A = 0) 
How good is solution (3.11)? In order to answer this question, we first note that (3.11) 
and its corresponding ‘spin-up’ solution fulfil both initial conditions (2.6) automatically 
(because (2.6) is treated exactly by the intermediary Laplace transformation, i.e. 
independently from the choice of Dho)). It is easily shown in a second step that (2.20), 
taken for n = 0, also holds after replacing the terms G by G(O). Since this modification 
of equation (2.20) connects zeroth-order solutions with both kinds of initial conditions 
(2.6) by differentiating with respect to t ,  solution (3.11) must be exact in zeroth- and 
Jirst-order in t. Actually, (3.11) is much better as is shown by a somewhat tedious 
expansion of both the exact solution (in powers of H )  and (3.11) (in powers of t ) :  

( J k l  exp(-iH(a, S)t) lOT)-(Jkl  exp(-iH(a, S ) t ) l O T ) ( o )  

=i(t5/5!)lyI2y*fi2(kI v(-s)~o)(s’- k ) +  0(t6). (3.12) 
Thus (3.11) represents an excellent approximation, better than by means of an exactly 
solvable Hamiltonian (note that this characterisation only counts the order in t up to 
which the approximation is exact; determining the (maximal) time beyond which the 
infinite-series solution in t becomes questionable is a somewhat different problem 
requiring explicit knowledge of the parameters a, S and will be dealt with in 9 4.4). 

Let us elucidate (3.12) in detail. It is appropriate to introduce the abbreviations 

(3.13) 

For the following it is important that B commutes with C+C- and C-C,.  Furthermore, 
because of the algebra of the operators U+ and U-, in non-vanishing matrix elements 
(J.1 . . . IT), the total number of operators C has to be odd, their sequence being alternating 

(3.14) 
with C-  on the outsides. Now we write down in ‘alphabetical order’ all permutations 
of operators stemming from H 5  and going with y*ly1*Q2, under the restriction (3.14) 

. .  * c-. . .  c+ . .  . c-. . . c, .  . . c-. . .  

(3.15) 
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The terms with broken underlines vanish (the B act either directly or through the 
operator pair C+C- on the ground state on the right); the fully underlined terms (the 
B act either directly or through the pair C-C, to the left) prove as reproduced by 
expanding (3.1 1) to fifth order in t ;  the only term not reproduced by expanding (3.1 1) 
is that where the commutators [ B ,  C,]  and [ B ,  C-] (which introduce the parameter 
6 )  would be needed for the evaluation. 

It is worth noting that the expression (.lo[ V(6) exp(-iHt)lOf)'O', whose exact form 
(.lolV(S)Iexp(-iHt)JOf) was one of our starting points in this section (cf (3.1b)), is 
even exact up to the fifth order in t .  This is easily explained by applying (OlC, to 
(3.15) or (OlV(6)lk) to (3.12) (in the latter case use (3.6) and collect terms in powers 

One may wonder whether an interpretation of (3.11) as a partial sum of the kind 
described above for the fifth order in t holds for all powers of t up to infinite order. 
For the special case A = 0 (i.e. the operator A does not occur) such a guess reduces to 
a rather simple but enlightening combinatorial problem. 

of 6 ) .  

Theorem. At each order in t solution (3.11) (in the case A = O )  results from the 
corresponding exact expression by keeping, from the complete expansion of the latter 
in operator sequences, only such sequences where the B act through (repetitions of) 
pairs C-C, to the left. 

Sketch of the  prooj From the series expansion of (3.11) 

sin($) 1 
t ' 4 1 .  

exp( t )  - - - -$-$k")'t' 

we pick out the terms of Nth  order in t and (assuming the theorem to be true) equate 
their sum with the value which results from that subclass of operator sequences in the 
exact solution where an operator C- appears on the right of H N  and a permutation 
with repetition of the operators B and C-C, on its left. By equating in any power of, 
say, C-C, (the power of B is then given) we are left with the following relation which 
has to be checked: 

[MI21 M + 1  

c ( + 1) (;) = 2 M-z*(  Mi ") p = 0, . . . , [ M/2]. (3.17) 
U = O  

M + l  is the (even or odd) order in t, p the order in C-C,, [ M / 2 ]  represents the 
nearest integer less than or equal to M / 2 .  As (3.17) proves to be true, the theorem is 
proven, too. 

We have the feeling that this combinatorial analysis could as well be extended to 
the case A # 0; a still more extended procedure might be a promising method to deal 
even with the complicated operator algebra occurring in higher-order members of the 
resolvent expansion. 

In any case, our present examination shows very nicely how in (3.11) the higher- 
order terms in t still try to 'simulate' the exact values. Let us now look for a first 
improvement (which affects all higher-order terms in t simultaneously). 
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3.3. First-order correction 

We define the difference between the exact differential operator D (2.17) and the 
approximate operator D(O) (3.3) as a 'perturbation' Dg' 

(3.18) 

Our iterative procedure for constructing the exact solution g = g'''+ g'"+ . , . is formally 
described by casting (2.16) into the form 

(3.19) 

OF'([, 8/88; a, 6 ;  s)  =iR(5-6)(8/86-6)(s-ih+iR5a/86). 

[D'O'+ D's'][g'o'+ g(')+. . .] = inhomogeneous 

and solving it by the scheme 

D'O)g'') = inhomogeneous ( 3 . 2 0 ~ )  

(3.206) 

where the only solutions admitted are those which are entire functions in 6. This 
approach is equivalent to a resolvent expansion of the operator D 

Y = 1,2 ,  . . . Dmg(") = -D' s) (01 

(3.21) 

With the aid of 

Dg'(6, 8 / 8 6 ;  a, 8; s ) t k  = iR(s -iP+i0k)[(G2+ k)Zk - atk+'-  6ktk-'l 

we derive the first-order correction from (3.206) with v = 1: 

(3.22) 

(3.23) 

based on gcO) (equation (3.4) with C = 0). Now we use the identity following from (3.5) 

(3.24) 

where the term 1 can be dropped because it does not contribute to the sum in (3.23) 
as is easily seen after collecting the terms under the sum in common powers of 6 (by 
renaming the summation indices). After (2.156) is performed, the final result is 

gi'kjoT(a, 8 ;  t )  = Ir12r*Wkl v(-S)lO) 

(3.25) 

We leave the explicit evaluation to 0 4.3 (cf equation (4.24) for n = 0) in a more 
general context. In appendix 1 we list a collection of powerful sum rules on residues 
of rational functions we have derived by mathematical induction. Those rules prove 
to be an adequate tool for examining expressions such as (3.25) in powers of t. By 
expanding exp(ts) in a Taylor series in t ,  ( A 1 . 2 ~ )  states that (3.25) vanishes up to 
third order in t (one has to identify the si with -iA and the zeros given by (3.9)). 
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Using (A1.26) one sees that the numerators in the brackets of (3.25) cancel exactly; 
the first non-vanishing expression is that given by (3.12) which is exactly reproduced 
by ( A 1 . 2 ~ ) .  As we shall see in § 4.1, the terms up to the fifth order in t are not affected 
within a higher-order resolvent expansion ( v  > 1) so that our results of § 3.2 are 
completely confirmed. 

Finally, the reader is warned of taking ( 3 . 2 5 )  too literally since later on we shall 
apply a slight modification which acts on terms in t of sixth order and above (cf § 4.2). 
We are now sufficiently prepared to attack the general case of arbitrary initial states. 

4. Series expansion for arbitrary initial states 

This section comprises a generalisation of the results of the previous section in that 
ansatz (3.3) is extended to arbitrary initial states. In § 4.1 our main results in each 
order of correction are presented. They are slightly modified in 0 4.2 in order to impose 
the correct symmetry behaviour under time reversal. In § 4.3 the inverse Laplace 
transformation is explicitly performed with regard to the first and second order of the 
resolvent expansion; brief instructions are given on how to deal with higher orders, 
combining symbolic and numerical procedures in a computer-aided calculation. In 
0 4.4 exactly solvable limiting cases in the parameter space are listed; a method for 
estimating the range of validity in time for arbitrary parameters is given. Section 4.5 
is reserved for the difficult problem of convergence of the present resolvent expansion. 

4.1. Resolvent expansion to arbitrary order 

Partly using arguments about the decoupled spin-oscillator system as in § 3.1 and partly 
using symmetry arguments with regard to time reversal, we are led to the ansatz 

DLo)(&, a/a&;  a ;  s)  = (s - i A +  iR@/d&)(s + i A +  iRn) + / y ( ’  (4.1) 

where n characterises the initial state. The zeroth-order equation corresponding to 
(3.2) is 

(4.2) 

Here we have introduced a new notation for the matrix elements of the operator V (  6) 
as explained in appendix 2. From 

with 

we obtain 

and 

(4.5) 
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with the definitions 

q k . n ( a )  = ( P 2 k , n ( a )  + IYI’)’’’ P k , n ( ( Y )  = A -$(k - n ) Q .  (4.7) 
Equations (4.4), (4.5) and (4.6) are generalisations of (3.5), (3.4) and (3 .1  l ) ,  respectively. 
We stress an important characteristic of dk,n(a;  s) in (4.5) which ensures that (4.6) has 
the correct symmetry with regard to time reversal: d k , , ( a ;  s) is of a form which leaves 
the solution (4.6) unchanged under the simultaneous replacements k e  n, A -  -A, 
6 t, -6. Such an invariance is a general property of the exact solution evolving under 
the Hermitian Hamiltonian H ( a ,  6). 

We comment that we failed in generalising the theorem of Q 3.2 into an expansion 
in t of (4.6). In detail, we tried to keep (in the corresponding exact expressions) only 
those sequences of operators (cf § 3.2) where the B act either through the pairs C-C+ 
to the left, or through the pairs C+C- to the right. However, we got incorrect weight 
factors in front of general powers of k and n so that (4.6), taken to some order in t ,  
was not reproduced. 

Now we turn to the first-order correction. The difference between the exact differen- 
tial operator (2.17) and 0:’ (4.1), i.e. 0:’ = D - D:”, acts on tk  as follows: 

D$’(t,d/ag; a, 6 ;  s ) t k  =iQ(s- iA+iRk)[ (S2+k-n)tk-6 .$k+1-6ktk-’ ] .  (4.8) 
The solution of (3.20b) ( v  = 1 )  based on (4.5) is 

(4.9) 
We now relabel the summation indices in such a way that the same power tk  appears 
in each of the three numerators in the brackets, and use 

1 - - s - i A +  iRk 
dk, , (a;  S )  s+iA+iRn ( (4.10) 

Again as in (3.24) the term 1 can be dropped, but now on account of (A2.4), thus 
revealing an intimate interplay between our n-dependent ansatz (4.1) and a set of 
recurrence relations involving Laguerre polynomials with a common lower index n. 
The result is 

(4.11) 

The same procedure is repeated in all higher-order corrections, the only difference 
being that the intermediate step of employing (4.10) and dropping the term 1 no longer 
applies. Since the other intermediate step, i.e. relabelling the summation indices, is 
sufficiently easy to handle, the calculus can be done rather explicitly. After defining 
the coefficients 

C[O] k ,n  - - a’+ k - n, c[,“’ = -as C[,i= - v ‘ F Z 6  (4.12) 
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(4.11) is transcribed into 

which serves as the basis for the higher members of the series 

G ~ $ ~ ( L Y ,  6 ;  t )  =ijy12y*(-in)Y 1 res 
exP(ts) 

(s + i A + i’ n dk,, ( a  ; s) 
1 s -iA+iR( k +  11) 

x c[k; x . . .  
I , = - l  d k + I l , n ( a ;  s) 

v = 2 , 3 ,  * .  * .  (4.14) 

Note that at each step of increasing the accuracy (i.e. v + v + 1)  the number of terms 
is tripled on account of (4.8). 

As for the iteration of the ‘spin-up’ solution (with the zeroth-order operator 
s+iA+iRn on the left of ( 2 . 1 2 ~ )  and (2.12b) left unchanged), we proved an equation 
resembling (2.20) 

(4.15) 

Formulae (4.14) and (4.15) jointly with (4.4) and (A2.2) represent quite general results 
for the time behaviour of the transition probability amplitudes, calculated in any order 
of correction; hence the evolution of the system is completely described. Because of 
(A1.2a), (A1.2b) and (A2.4), the corrections Gi&T(a, 6; t )  ( v s  1 )  vanish up to the 
(3+ v)th power in t, i.e. they are exact up to the (4+ v)th power. The ‘spin-up’ terms 
in comparison with the former ‘spin-down’ terms are exact to one less order due to 
differentiating once with respect to r in (4.15). 

Partly in anticipation of the intention of the next section, we now give some 
particular results. Starting from the generalisation of (3.12) 

(.1 kl exp( -i H ( a, 6 ) t ) I n T) (’ = -i ( t 5 /  5 ! ) I Y I y * n 2 6  [ f l f k -  I ,,, ( 6 ) 

1 
Gi$,nT(~, 6 ;  ?)=-,E (a/at-iA+ikR)f,,k(-6)G~Ykint(a, 6 ;  t ) .  

I?’ k 

(4.16) 

(found by applying ( A 1 . 2 ~ )  on (4.11)), one proves for the form symmetrised in the 
initial and final oscillator states 

(4.17) 

For the proof that (4.17) cancels in fifth order one has simply to insert a complete set 
of intermediate states on the right of V ( 6 ) .  It is easily deduced from (4.17) that 

(4.18) 

holds for any real linear combination 10) in terms of states In). Equation (4.18), being 
in agreement with a statement on (io1 V ( 6 )  exp(-iHt))OT)‘O) in 0 3.2, demonstrates that 
the quality of our approach is even improved for particular state vectors. 

( J m l v ( 6 )  exp(-iH(a, S ) t ) l n T ) ( ” + m - n  = ~ ( t ‘ ) .  

(&@I V ( S )  exp(-iH(a, 6 ) t ) l @ T ) ( 1 ) =  o(t6) 
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4.2. Symmetrisation in initial and j n a l  states: time evolution of the original (untransfor- 
med) system 

By inspection of the ‘spin-up’ counterpart to (4.6) which follows from (4.15) 

(4.19) 

(cf definitions (4.7) for qk,n and Pk,n) one concludes that in general the expressions 
G‘”’ may lack the correct symmetry behaviour under time reversal (or, in the example 
under consideration, with respect to simply interchanging initial and final states). This 
happens because we have treated the evolution of the system from the very beginning 
in an unsymmetrical fashion by shifting operations (e.g. those in (2.8)) only to the left. 
Of course, the total sum of contributions to a given power of t behaves apriori correctly 
under time reversal. Consider a ‘spin-down’ example: as (4.6) has the correct invariance 
described below (4.7) in all powers of t, the only correction in the fifth power of t ,  i.e. 
(4.16), must also reveal this invariance, which is indeed the case on account of (A2.5). 
Hoping to get better results quite generally at any level of approximation, we shall 
now impose the correct symmetry behaviour on the corrections G‘”’. 

The problem of installing the correct symmetry properties on the matrix elements 
GiYL,nT evolving under the (Hermitian) Hamiltonian H (  a, 8) is easily overcome by 
choosing suitable linear combinations G[ri),,nt consisting of two matrix elements GiiL,xt 
of the same order v where m and n are interchanged and some signs of the system 
parameters may be changed. Subsequently, at any order v of the expansion (3.20), 
the terms G‘”’ have to be replaced by the new combinations G[”’. That is, we replace 
at any order v of the expansion (3.20) those terms which are denoted by an upper 
index (’’ by terms with an upper index [”’. Our final results are 

G[”m]nT(a, 8 ;  f)=i[GiYm),nT(a, 8 ;  t ) + G i L i m t ( c u ,  t) l  c i  = {-A, R, y ,  7”) (4.20) 

(Lmi exp(- iHOri , t )~n~)[”’  exp(iE,t) 

(4.20‘) 

1 a - - -2iy*T (G-iA+ikR 

In (4.20’) and (4.21’) we have reintroduced the original Hamiltonian (1.1) by inverting 
the unitary transformation (1.2) thus connecting with our original problem ( E ,  is the 
energy shift defined jointly with (1.3)). The transition probability amplitudes of the 
transformed system are given by (4.14) and (4.15). For practical purposes, examination 
of these two latter equations may suffice in most cases. 
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We note that by means of (4.17) G\2,,T(a, 6; t )  is better than G/2,nf(a, 6; t )  by 
one order in t so that GFA,nT(a, 6; t )  is correct up to the fourth power of t (just like 
the corresponding 'spin-down' term). This fact strongly assures that symmetrisation 
indeed improves our expansion. Equation (4.18) holds as well under replacing H by 
Horig. 

4.3. Evaluation of the residues 

In our general formula (4.14), we have still to evaluate the residues stemming from 
inverting the Laplace transformation originally introduced in (2.12). Clearly, if in 
(4.14) the k indices in multiple products of the dk, ,  become identical, multiple poles 
arise whose residues can be evaluated by a standard formula of function theory which 
serves for calculating the residuum of an analytical function F ( s )  in a pole so of mth 
order: 

(4.22) 

In using (4.22), one has to be sure that there are no other (overlooked) degeneracies 
which would lead to divergences (which could be balanced only by additional limiting 
procedures). Now an explicit investigation of the positions of the poles yields the 
most pleasing result that there are no other degeneracies (besides those originating 
from identical k indices) except in cases which comprise pathological values of the 
oscillator state numbers and system parameters, i.e. R + 0,l k - n /  + 00, y += 0 and I yI + 00. 
An accidental degeneracy in the sense of crossing poles induced by smoothly turning 
the parameters can never occur. 

Now we are able to make use of (4.22) for the explicit evaluation of the two 
lowest-order corrections of (4.6). As can be easily shown, the total sum of residues 
stemming from the pole (s+iA+iRn)- '  vanishes in (4.14) for arbitrary v as a con- 
sequence of (A2.4) so that the evaluation is simplified. For the purpose of a convenient 
representation we define 

(4.23) 

where the U are the imaginary parts of the zeros of (4.4) and abbreviations (4.7) are 
used. Then the first-order correction is 

The next higher correction is given in appendix 3. From definitions (4.23) we read off 
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that each term in (4.24) and  (A3.2) has its counterpart where the roots q (4.7) are 
replaced by their negative values so that in all non-vanishing higher-order terms in t 
(starting from the fifth order as discussed in D 4.1) only integral powers of the system 
parameters result. 

We point out that (4.24) and  (A3.1) are of great practical use as they enable the 
time evolution of the transition probabilities to be plotted as a function of the five 
system parameters, in this connection not only making (4.6) exact up  to the sixth order 
in t, but also correcting (4.6) up  to infinite order in t to an  extent which depends on 
the actual parameter values a and 6 (as will be elucidated in the next section). 

A point of interest is the numerical stability of equations (4.24) and (A3.1) (for 
instance, if one wishes to plot them with the aid of a computer). One easily recognises 
that the numerical stability in the sum over all residues is weakened if two or  more 
poles approach each other. Thus from the foregoing discussion in this section concern- 
ing the degeneracies we conclude that the numerical accuracy is not reduced as long 
as one keeps oneself far enough from the pathological cases mentioned above. 

In this context, the following should be remarked with regard to the algebraic form 
of (4.24) and  (A3.1). In order to increase the numerical accuracy in these equations 
for small y, we have replaced ( v k , J ’  (cf equation (4.23)) by its algebraic equivalent 
( - ~ ~ , ~ , + ) / l y l ’  in all contributions proportional to positive powers of ( v ~ , ~ , - ) - ’ .  The 
reason for this replacement is that for small y values vk,n , -  is the difference of two 
almost equal terms which apparently leads to a loss of accuracy in precisely those 
terms which contribute considerably to the total result. 

Because of the rather lengthy form of (A3.2) it seems impossible to treat higher 
corrections in an  analytical way. There is, however, the possibility of a computer-aided 
calculation. It would be desirable that a program written for this purpose would deal 
with higher derivatives with respect to s in a symbolic way; fortunately, only elementary 
functions in s (whose derivatives stay in the frame of the same functions) are involved 
in (4.14). In detail, such a program had for fixed I , ,  . . . , 1, to identify the multiplicity 
of the appearing poles, to evaluate their residues by (4.22), and  to add  them up; 
subsequently the summation on the l , ,  . . . , I ,  had to be executed. 

4.4. Limiting cases in the parameter space: estimation of the range of validity in time 

Let us discuss the transformed system (1.3) for simplicity. Without loss of generality 
we may set n = 1 (i.e. we measure the time t with n as unit). 

According to our detailed discussion at  the beginning of § 3.1, the approaches (3.3) 
and  (4.1) contain the fact that the cases 6 + 0 and/or  y + 0 are exactly solved already 
in the zeroth-order approximation, i.e. by (4.6) and  (4.19) (symmetrisation according 
to Q 4.2 is superfluous). In detail, for 6 + 0 the well known Rabi solution (Rabi 1937) 
for a two-level system is obtained with f k , n ( 0 )  = 6k,n ,  qk,n(cx) = qRabi(CY) = (A2SJyl2)”’. 
In  the case y -+ 0, the system remains in its initial state apart from a time dependent 
phase factor which clearly solves ( 2 . 4 ~ ) .  

However, there are still other limits which are also solved in zeroth-order approxima- 
tion, namely /yI+oo, A/ y zero or finite (qk ,n (cr )  is replaced by qRab l ( fx )  which gives 
rise to rapid oscillations) and  6 + a3 and/or  A + 00 (the system remains in its initial state). 

For arbitrary parameters, one has to estimate an  upper bound T of the time interval 
0 < t < T in which a (symmetrised) approximation of order v, 6[.’ (=  GIO1 + . . . + GrU1), 
does not deviate too much from the exact transition probability amplitude. For this 
aim, we propose to check simply how well the conservation of the norm for the total 
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transition probability, say, in the approximate form 
a m c l@iYkinf(Q, 6; t)12+ 1 I@;&(Q,  6 ;  t)12= 1 

k=O k=O 
(4.25) 

is fulfilled within the interval; the two terms on the left are the conditional probabilities 
of finding the spin in the lower and upper state if the system was in the state In?) at 
t = 0. The difference of these two terms is of particular physical interest because it 
approximates the expectation value of -2az( t )  in vth order. 

In all limiting cases listed above, the sign of equality holds in (4.25), and T goes 
to infinity. We note that in these cases quite simple tests of consistency are available: 
one can check whether the higher-order corrections tend to zero. In doing so, we 
obtain that not only the first correction (4.11) itself vanishes but also the sum over k 
of the squared moduli of (4.11) (whether symmetrised or not). For instance, in the 
case 6 +CO, only the infinite tail from some large ko can contribute to the latter sum 
because of the k dependence of j&(6);  but then, because of the smoothness of the 
denominator & ( a ;  s)  in (4.11) as a function of k, equation (A2.4) applies so that no 
contribution to the sum remains at all. These considerations can be extended to higher 
corrections whether of the first or second term in (4.25). 

4.5. The question of convergence 

Finally, let us turn to the question of whether the solution GJ.k,nr(a,  6; t )  written as 
a n  infinite series G = G‘O’+ G(’)+.  . . in terms of (4.14) has to be interpreted as an  
asymptotic solution rather than the equality still being strictly exact. Our feeling is 
that as long as the Taylor series in t for the exact transition probability amplitude G 
exists for all t ,  the exact equality holds. That is, we quote that the convergence of the 
resolvent expansion is only limited by the analytical properties of the expanded function 
G ( t ) .  In other words, from § 4.1 we know that the members of the Taylor series for 
G and for its vth approximation G(’)+. . .+G‘”’  are the same up  to the (4+ v)th 
power in t ;  we hope that the difference between the vth approximation of G and its 
truncated Taylor series (with members up  to the (41- v)th power in t only) tends to 
zero in the limit v + cc. We leave this question open to discussion. 

Of course, for physical applications the question of convergence is of minor 
importance if one is only interested in lower approximations. On the other hand, 
supposing convergence is secured, we have constructed an analytic solution for our 
problem with a rather intricate Hamiltonian, a kind of solution which many other 
people have previously sought by dealing with the stationary states of the system. 

5. Conclusions 

In order to avoid conventional paths in exactly treating the coupled spin-oscillator 
model, we have developed an  iteration scheme (mathematically to be characterised as 
a resolvent expansion) for constructing time-dependent solutions. These solutions are 
given in the form of transient probability amplitudes for arbitrary initial and final 
states. Our approach is quite natural to describe the dynamics of the system. For 
instance, elimination of the final states of the bosonic subsystem leads to a description 
of the averaged motion of the spin (or of the tunnelling particle in the two-site system, 
depending on the interpretation of the model). 
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Independently of the values of the five system parameters, already the zeroth-order 
solution is exact up to the fourth order in time. We explicitly give the Laplace transforms 
(with regard to the time) of any higher-order member of the resolvent expansion. We 
have performed the inverse Laplace transformation for the first and second member. 
Furthermore, brief instructions are given on how to deal with the inverse Laplace 
transformation quite generally by means of a computer program. 

A most striking feature of our approach is that several limiting cases with regard 
to the parameter values are treated exactly. In particular, those cases are contained 
where the coupling parameter and the tunnel parameter vanish or become infinite. 
For intermediate values of these parameters, the time region of validity is restricted. 
It can be expected, however, that even the first-order term of the resolvent expansion 
leads to fairly exact results within a large time region of physical interest. Examination 
of the complete parameter space was beyond the scope of our work, but concrete 
problems should surely be attacked in the future. A general method for estimating 
the time region of validity is given. 

The difficult (and ourely mathematical) question of whether or not the resolvent 
expansion converges in a strict sense is left open to a further discussion. 

In addition to our thorough investigation of the coupled spin-oscillator system, we 
have made a first step in handling the intricate problem of operator algebra in the 
time-dependent solutions of the system equations by means of combinatorics. 
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Appendix 1 

By starting from 

1 1 res = a n , ]  (s  - SI) . . * (s - s, ) 

the following relations may be derived by mathematical induction: 

S m  

(s-s,). * .  ( s - s n )  

S n - l  

( 3  -SI) . . . (s -ss , )  

1 res = O  for 0 6  m < n - 1 

C res = I  

S n  
res =s,+s2+. . . 

( s - S I ) .  . . ( s - s s , )  

S n + l  

( s - s 1 ) .  . * (s -ss , )  
= s:+ s;+. . . + s,s,+ s1s3 + * . . C res 

( A l . l )  

( A 1 . 2 ~ )  

(A1.2b) 

( A 1 . 2 ~ )  

(A1.2d) 

(A1.2e) 
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The si are the (not necessarily distinct) zeros of polynomials in the variable s occurring 
in the denominators. By combinatorics it is ensured that odd powers in the roots q 
(cf equation (3.9)) cancel as should be the case in a series expansion of (2.10), where 
only entire powers of the system parameters occur. 

Appendix 2 

We write the matrix elements of the operator V ( 6 ) ,  known as the Frank-Condon 
overlap integral, in a frequently used notation 

f m , n ( S )  = ( m l V ( - s ) l n ) = ( n l v ( s ) l m )  6ER. (A2.1) 
Its explicit form which is immediately deduced from (2.18) 

is usually written in an unsymmetrical form (Wagner 1959, Koide 1960) 

fm ,n (6 )  = exp(-+S2)6"-" - ~ : - " ( 6 ~ )  (A2.3) d:; 
where L;-;" is a (generalised) Laguerre polynomial. 

The following recurrence relations, holding for integer k and n, are easily proved 
by collecting terms in common powers of S and converting the resulting coefficients 
by means of well known properties of the binomial coefficients with integral arguments: 

( 6 * + k -  n l f k , n ( 6 ) - ~ J T ; f k - 1 , , ( 6 ) - G ~ k + , , , ( G )  = o  (A2.4) 

(A2.5) - I ,n ( 8 - m f k +  I ,  ( 6 ) = - 1 ( 6 ) + J;;+'i,, + 1 ( 6 1. 

Appendix 3 

The second-order correction of (4.6) is 

Git!nt(a, 6; t )  = I + I1 + I11 
where 

(A3.1) 

(A3.2 a )  
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where 
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+ B k , k ” (  a ;  t) - Bk’,k”( a, t )  

and 

( A 3 . 2 ~ )  

where 

1 f U 3 k + l , n , ? ( 4  

/= -1 .1  r %+l,n ( a  1 - 2  c c exP(iuk+l,fl,=(Q)t 

The terms I ,  11, 111 in (A2.2) correspond respectively to the cases where three or two 
pairs of poles coincide, or no degeneracy occurs at all (in each term the residues of 
(s  + iA +inn)-’ are omitted because they cancel altogether). 
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